We discuss several aspects of multiple inference in longitudinal settings, focusing on many-to-one and all-pairwise comparisons of (a) treatment groups simultaneously at several points in time, or (b) time points… Click to show full abstract
We discuss several aspects of multiple inference in longitudinal settings, focusing on many-to-one and all-pairwise comparisons of (a) treatment groups simultaneously at several points in time, or (b) time points simultaneously for several treatments. We assume a continuous endpoint that is measured repeatedly over time and contrast two basic modeling strategies: fitting a joint model across all occasions (with random effects and/or some residual covariance structure to account for heteroscedasticity and serial dependence), and a novel approach combining a set of simple marginal, i.e. occasion-specific models. Upon parameter and covariance estimation with either modeling approach, we employ a variant of multiple contrast tests that acknowledges correlation between time points and test statistics. This method provides simultaneous confidence intervals and adjusted p-values for elementary hypotheses as well as a global test decision. We compare via simulation the powers of multiple contrast tests based on a joint model and multiple marginal models, respectively, and quantify the benefit of incorporating longitudinal correlation, i.e. the advantage over Bonferroni. Practical application is illustrated with data from a clinical trial on bradykinin receptor antagonism.
               
Click one of the above tabs to view related content.