LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fitting the data from embryo implantation prediction: Learning from label proportions

Photo from academic.microsoft.com

Machine learning techniques have been previously used to assist clinicians to select embryos for human-assisted reproduction. This work aims to show how an appropriate modeling of the problem can contribute… Click to show full abstract

Machine learning techniques have been previously used to assist clinicians to select embryos for human-assisted reproduction. This work aims to show how an appropriate modeling of the problem can contribute to improve machine learning techniques for embryo selection. In this study, a dataset of 330 consecutive cycles (and associated embryos) carried out by the Unit of Assisted Reproduction of the Hospital Donostia (Spain) throughout 18 months has been analyzed. The problem of the embryo selection has been modeled by a novel weakly supervised paradigm, learning from label proportions, which considers all the available data, including embryos whose fate cannot be certainly established. Furthermore, all the collected features, describing cycles and embryos, have been considered in a multi-variate data analysis. Our integral solution has been successfully tested. Experimental results show that the proposed technique consistently outperforms an equivalent approach based on standard supervised classification. Embryos in this study were selected for transference according to the criteria of the Spanish Association for Reproduction Biology Studies. Obtained classification models outperform these criteria, specifically reordering medium-quality embryos.

Keywords: data embryo; embryo implantation; label proportions; learning label; fitting data

Journal Title: Statistical Methods in Medical Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.