LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A group sequential design and sample size estimation for an immunotherapy trial with a delayed treatment effect

Photo from wikipedia

A delayed treatment effect is often observed in the confirmatory trials for immunotherapies and is reflected by a delayed separation of the survival curves of the immunotherapy groups versus the… Click to show full abstract

A delayed treatment effect is often observed in the confirmatory trials for immunotherapies and is reflected by a delayed separation of the survival curves of the immunotherapy groups versus the control groups. This phenomenon makes the design based on the log-rank test not applicable because this design would violate the proportional hazard assumption and cause loss of power. Thus, we propose a group sequential design allowing early termination on the basis of efficacy based on a more powerful piecewise weighted log-rank test for an immunotherapy trial with a delayed treatment effect. We present an approach on the group sequential monitoring, in which the information time is defined based on the number of events occurring after the delay time. Furthermore, we developed a one-dimensional search algorithm to determine the required maximum sample size for the proposed design, which uses an analytical estimation obtained by the inflation factor as an initial value and an empirical power function calculated by a simulation-based procedure as an objective function. In the simulation, we tested the unstable accuracy of the analytical estimation, the consistent accuracy of the maximum sample size determined by the search algorithm and the advantages of the proposed design on saving sample size.

Keywords: design; group sequential; delayed treatment; sample size; treatment effect

Journal Title: Statistical Methods in Medical Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.