LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A supervised clustering MCMC methodology for large categorical feature spaces

Photo from wikipedia

There is a well-established tradition within the statistics literature that explores different techniques for reducing the dimensionality of large feature spaces. The problem is central to machine learning and it… Click to show full abstract

There is a well-established tradition within the statistics literature that explores different techniques for reducing the dimensionality of large feature spaces. The problem is central to machine learning and it has been largely explored under the unsupervised learning paradigm. We introduce a supervised clustering methodology that capitalizes on a Metropolis Hastings algorithm to optimize the partition structure of a large categorical feature space tailored towards minimizing the test error of a learning algorithm. This is a general methodology that can be applied to any supervised learning problem with a large categorical feature space. We show the benefits of the algorithm by applying this methodology to the problem of risk adjustment in competitive health insurance markets. We use a large claims data set that records ICD-10 codes, a large categorical feature space. We aim at improving risk adjustment by clustering diagnostic codes into risk groups suitable for health expenditure prediction. We test the performance of our methodology against common alternatives using panel data from a representative sample of twenty three million citizens in Colombian Healthcare System. Our results outperform common alternatives and suggest that it has potential to improve risk adjustment.

Keywords: methodology; feature spaces; feature; categorical feature; large categorical; supervised clustering

Journal Title: Statistical Methods in Medical Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.