LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Omnibus test for restricted mean survival time based on influence function.

Photo by jontyson from unsplash

The restricted mean survival time (RMST), which evaluates the expected survival time up to a pre-specified time point τ, has been widely used to summarize the survival distribution due to… Click to show full abstract

The restricted mean survival time (RMST), which evaluates the expected survival time up to a pre-specified time point τ, has been widely used to summarize the survival distribution due to its robustness and straightforward interpretation. In comparative studies with time-to-event data, the RMST-based test has been utilized as an alternative to the classic log-rank test because the power of the log-rank test deteriorates when the proportional hazards assumption is violated. To overcome the challenge of selecting an appropriate time point τ, we develop an RMST-based omnibus Wald test to detect the survival difference between two groups throughout the study follow-up period. Treating a vector of RMSTs at multiple quantile-based time points as a statistical functional, we construct a Wald χ2 test statistic and derive its asymptotic distribution using the influence function. We further propose a new procedure based on the influence function to estimate the asymptotic covariance matrix in contrast to the usual bootstrap method. Simulations under different scenarios validate the size of our RMST-based omnibus test and demonstrate its advantage over the existing tests in power, especially when the true survival functions cross within the study follow-up period. For illustration, the proposed test is applied to two real datasets, which demonstrate its power and applicability in various situations.

Keywords: survival time; influence function; time; test

Journal Title: Statistical methods in medical research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.