LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Polyaniline-TiO2 Nanocomposites and Their Application in Photocatalytic Degradation

Photo by gabrielle_photo from unsplash

Photocatalyst involving conducting polymer doped with titanium dioxide, TiO2 hold a great efficiency for photocatalytic application. In present study, polyaniline (PAni) with different TiO2 content (10%, 20%, and 40%) has… Click to show full abstract

Photocatalyst involving conducting polymer doped with titanium dioxide, TiO2 hold a great efficiency for photocatalytic application. In present study, polyaniline (PAni) with different TiO2 content (10%, 20%, and 40%) has been successfully synthesized through template free method. Ultraviolet-visible (UV-vis), Fourier Transform Infrared (FTIR), Raman, and X-ray Powder Diffraction (XRD) characterizations of PAni-TiO2 nanocomposites confirmed the chemical structure of polymer composites was intact after doped with TiO2. Field Emission Scanning Electron Microscope (FESEM) investigation of PAni-TiO2 nanocomposites revealed the formation of nanorod/nanotube. PAni-TiO2(10%) showed the highest conductivity 2.48 × 10−2 S/cm as compared to those with 20% and 40% of TiO2 content. Photocatalytic properties of PAni-TiO2 were examined by degrading Reactive Black 5 (RB5) dye under visible light irradiation. PAni-TiO2(10%) showed the greatest degradation (96%) than that of TiO2 (10%). Due to synergistic effect between PAni and TiO2, it is capable of absorbing visible light more efficiently and decreasing the process of electron hole recombination. Photoluminescence (PL) analysis proved low efficiency of electron hole recombination of PAni-TiO2.

Keywords: tio2; degradation; synthesis polyaniline; pani tio2; tio2 nanocomposites

Journal Title: Polymers and Polymer Composites
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.