Photocatalyst involving conducting polymer doped with titanium dioxide, TiO2 hold a great efficiency for photocatalytic application. In present study, polyaniline (PAni) with different TiO2 content (10%, 20%, and 40%) has… Click to show full abstract
Photocatalyst involving conducting polymer doped with titanium dioxide, TiO2 hold a great efficiency for photocatalytic application. In present study, polyaniline (PAni) with different TiO2 content (10%, 20%, and 40%) has been successfully synthesized through template free method. Ultraviolet-visible (UV-vis), Fourier Transform Infrared (FTIR), Raman, and X-ray Powder Diffraction (XRD) characterizations of PAni-TiO2 nanocomposites confirmed the chemical structure of polymer composites was intact after doped with TiO2. Field Emission Scanning Electron Microscope (FESEM) investigation of PAni-TiO2 nanocomposites revealed the formation of nanorod/nanotube. PAni-TiO2(10%) showed the highest conductivity 2.48 × 10−2 S/cm as compared to those with 20% and 40% of TiO2 content. Photocatalytic properties of PAni-TiO2 were examined by degrading Reactive Black 5 (RB5) dye under visible light irradiation. PAni-TiO2(10%) showed the greatest degradation (96%) than that of TiO2 (10%). Due to synergistic effect between PAni and TiO2, it is capable of absorbing visible light more efficiently and decreasing the process of electron hole recombination. Photoluminescence (PL) analysis proved low efficiency of electron hole recombination of PAni-TiO2.
               
Click one of the above tabs to view related content.