Recycled bamboo fiber-reinforced chemically functionalized ethylene propylene rubber (R-BMBF/CF-EPR) composites have been developed by extrusion and injection molding by Palsule process without any fiber treatment and without compatibilizer. Scanning electron… Click to show full abstract
Recycled bamboo fiber-reinforced chemically functionalized ethylene propylene rubber (R-BMBF/CF-EPR) composites have been developed by extrusion and injection molding by Palsule process without any fiber treatment and without compatibilizer. Scanning electron microscopy (SEM) shows good R-BMBF/CF-EPR interfacial adhesion in the composites, and Fourier transform infrared (FTIR) confirms that esterification and the hydrogen bonding between functional groups of CF-EPR and of R-BMBF impart this interfacial adhesion. Mechanical, dynamic mechanical, and thermal properties and the effect of water absorption on tensile properties of the composites have been evaluated. Tensile properties of the 15/85, 25/75, and 35/65 R-BMBF/CF-EPR composites are higher than those of CF-EPR and increase with increasing R-BMBF in the composites. Storage modulus and loss modulus of the composites increase with increasing fiber contents in them but decrease with increasing temperature. Water-absorbed wet composites show thickness swelling and reduced tensile properties relative to the respective dry composites but higher tensile properties than the dry CF-EPR. Thermal stability and degradation of the composites is also reported.
               
Click one of the above tabs to view related content.