LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilization of tyre rubber hybrid with ceramic and wood for impact energy absorption application

Photo from wikipedia

The used tyre rubber, scrap ceramic tiles and wood dust are largely dumped into landfills, which create environmental pollution to the surrounding. The recycling of tyre rubber is very limited,… Click to show full abstract

The used tyre rubber, scrap ceramic tiles and wood dust are largely dumped into landfills, which create environmental pollution to the surrounding. The recycling of tyre rubber is very limited, but it has good property to absorb the impact energy. Hence, these materials are used to prepare the composite in the present work. Composite materials were prepared by the resin transfer moulding method with different weight percentage of particles. The tensile, flexural and impact strength of composite specimens were compared with other combination of composites and also with the neat resin sample specimen. The tensile and flexural strength of composites were decreased with the addition of the rubber. But, the rubber particle with the ceramic in the resin matrix increases the impact strength of composite by 45.91% when compared with the neat resin sample. The addition of rubber enhances the impact strength of composite materials with all the combination of particles. The better distribution and good interfacial adhesion of particles with a resin matrix along the fractured surface were observed by the scanning electron microscope. And also, the nature of failure was identified by morphological studies.

Keywords: rubber; tyre rubber; wood; impact energy

Journal Title: Polymers and Polymer Composites
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.