LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma matrix metalloprotease 9 correlates with blood lymphocytosis, leukemic cell invasiveness, and prognosis in B-cell chronic lymphocytic leukemia

Photo by nhiamoua from unsplash

The complex biology underlying chronic lymphocytic leukemia cell migration and tissue invasiveness is not yet completely understood and might provide novel predictive markers and therapeutic targets. A total of 36… Click to show full abstract

The complex biology underlying chronic lymphocytic leukemia cell migration and tissue invasiveness is not yet completely understood and might provide novel predictive markers and therapeutic targets. A total of 36 patients out of treatment from at least 3 months were enrolled and followed up for a median period of 44.2 months (range: 4.4–99.2). Matrix metalloprotease 9 and tissue inhibitor of metalloproteases 1 plasma levels and production/release from lymphoid cells were measured by zymography and enzyme-linked immunosorbent assay (ELISA) analysis. Malignant and normal lymphocyte mobility and matrix-degradation capability were studied using a Boyden chamber system, with and without autologous plasma. Free matrix metalloprotease 9 plasma levels were related with blood lymphocytosis, especially in more advanced stages (p = 0.003), and higher concentrations were associated with an increased disease progression risk (hazard ratio = 9.0, 95% confidence interval = 1.5–13.8). Leukemic cells expressed and secreted very little matrix metalloprotease 9. On the contrary, normal lymphocytes derived from the same leukemic patients showed matrix metalloprotease 9 intracellular levels that were lower in subjects with higher blood lymphocytosis (p = 0.024) and more advanced stages (p = 0.03); the released quantities were inversely associated with matrix metalloprotease 9 plasma concentrations (p = 0.035). Leukemic cells had a reduced spontaneous mobility and matrix-degradation capability that were stimulated by autologous plasma (p = 0.001) and normal lymphocytes (p = 0.005), respectively. Matrix metalloprotease 9 affected cell invasiveness depending on concentration and disease stage. In conclusion, chronic lymphocytic leukemia cells have a reduced mobility, matrix-degradation capability, and matrix metalloprotease 9 production compared to their own autologous normal lymphocytes. They are exposed to matrix metalloprotease 9 of prevalently systemic origin whose higher levels are associated with both leukemic and normal lymphocyte accumulation in the peripheral blood and have a negative prognostic value.

Keywords: metalloprotease; matrix metalloprotease; biology; chronic lymphocytic; cell

Journal Title: Tumor Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.