LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clinically relevant radioresistant cells exhibit resistance to H2O2 by decreasing internal H2O2 and lipid peroxidation

Photo from wikipedia

Radiation therapy is one of the choices to treat malignant tumors. In radiation therapy, existence of radiation-resistant cell is a major problem to overcome. We established clinically relevant radioresistant cells… Click to show full abstract

Radiation therapy is one of the choices to treat malignant tumors. In radiation therapy, existence of radiation-resistant cell is a major problem to overcome. We established clinically relevant radioresistant cells that had been obtained by exposing to 2 Gy/day X-rays for more than 30 days. These cells are resistant to 2 Gy/day X-ray exposure and anticancer agents. However, the underlying resistance mechanism remains unclear. We investigated the resistance of clinically relevant radioresistant cells to hydrogen peroxide (H2O2), confirming a degree of resistance. Neither catalase enzyme activity nor aquaporins appeared to be involved in H2O2 resistance. Mitochondrial DNA copy number, adenosine triphosphate (ATP) concentration, and plasma membrane potential were decreased. The timing of H2O2 intake was delayed and lipid peroxidation was decreased. Sensitivity of clinically relevant radioresistant cells to H2O2 was enhanced by 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine administration. These results suggest that the membrane status is a major factor conferring H2O2 resistance in clinically relevant radioresistant cells, and we should further investigate how membrane status could be used to enhance the therapeutic effect on cancer.

Keywords: relevant radioresistant; clinically relevant; h2o2; resistance; radioresistant cells

Journal Title: Tumor Biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.