This work is devoted to the free vibration nonlocal analysis of an elastic three-layered nanoplate with exponentially graded graphene sheet core and piezomagnetic face-sheets. The rectangular elastic three-layered nanoplate is… Click to show full abstract
This work is devoted to the free vibration nonlocal analysis of an elastic three-layered nanoplate with exponentially graded graphene sheet core and piezomagnetic face-sheets. The rectangular elastic three-layered nanoplate is resting on Pasternak’s foundation. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on first-order shear deformation theory. In addition, Eringen’s nonlocal piezo-magneto-elasticity theory is used to consider size effects. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually, the natural frequency is scrutinized for different side length ratio, nonlocal parameter, inhomogeneity parameter, and parameters of foundation numerically. The comparison with various references is performed for validation of our analytical results.
               
Click one of the above tabs to view related content.