LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of boundary flexibility on the performance of piezoelectric vibration energy harvesting beam systems by DTFM

Photo from wikipedia

The purpose of this paper is to investigate the effect of boundary flexibility on the performance of piezoelectric vibration energy harvester (PVEH) beam systems, which has not been studied comprehensively… Click to show full abstract

The purpose of this paper is to investigate the effect of boundary flexibility on the performance of piezoelectric vibration energy harvester (PVEH) beam systems, which has not been studied comprehensively in the literature despite its importance. The coupled electromechanical equations of motion of a piezoelectric cantilever beam with a tip mass are established, with the base boundary constrained by translational and rotational springs. An exact closed-form solution of the frequency response function (FRF) of the PVEH is obtained by the distributed transfer function method (DTFM). The DTFM is a systematic powerful tool for the dynamic analysis of distributed parameter continua with non-classical boundary conditions, intermediate constraints, coupled fields, and non-proportional damping without adding much complexity to the solution formulation. Moreover, the DTFM computes the derivatives of the response, that is, the strains, which are required in the electromechanical coupling formulation, simultaneously without any differentiation. Numerical results showing the effects of boundary flexibility on energy harvesting efficiency are presented. A first-order rational function relating the boundary stiffness parameters and the harvesting efficiency is determined by nonlinear curve fitting of the calculated data. Physical insights and applicability of this analytical function for end-of-line quality check of the boundary of PVEH are discussed.

Keywords: performance piezoelectric; boundary flexibility; flexibility performance; energy; flexibility; piezoelectric vibration

Journal Title: Journal of Intelligent Material Systems and Structures
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.