A spatially-constrained clustering algorithm is presented in this paper. This algorithm is a distributed clustering approach to fine-tune the optimal distances between agents of the system to strengthen the data… Click to show full abstract
A spatially-constrained clustering algorithm is presented in this paper. This algorithm is a distributed clustering approach to fine-tune the optimal distances between agents of the system to strengthen the data passing among them using a set of spatial constraints. In fact, this method will increase interconnectivity among agents and clusters, leading to improvement of the overall communicative functionality of the multi-robot system. This strategy will lead to the establishment of loosely-coupled connections among the clusters. These implicit interconnections will mobilize the clusters to receive and transmit information within the multi-agent system. In other words, this algorithm classifies each agent into the clusters with the lowest cost of local communication with its peers. This research demonstrates that the presented decentralized method will actually boost the communicative agility of the swarm by probabilistic proof of the acquired optimality. Hence, the common assumption regarding the full-knowledge of the agents’ primary locations has been fully relaxed compared to former methods. Consequently, the algorithm’s reliability and efficiency is confirmed. Furthermore, the method’s efficacy in passing information will improve the functionality of higher-level swarm operations, such as task assignment and swarm flocking. Analytical investigations and simulated accomplishments, corresponding to highly-populated swarms, prove the claimed efficiency and coherence.
               
Click one of the above tabs to view related content.