LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Review on Potential Involvement of TRPV1 Channels in Ischemia–Reperfusion Injury

Photo from wikipedia

Besides functioning as thermosensors, transient receptor potential vanilloid 1 (TRPV1) channels play a pivotal role in ischemia–reperfusion injury. Transient receptor potential vanilloid 1 channel activation attenuates ischemia–reperfusion-induced injury in various… Click to show full abstract

Besides functioning as thermosensors, transient receptor potential vanilloid 1 (TRPV1) channels play a pivotal role in ischemia–reperfusion injury. Transient receptor potential vanilloid 1 channel activation attenuates ischemia–reperfusion-induced injury in various organs including the heart, lungs, kidneys, and the brain. Transient receptor potential vanilloid 1 channels are expressed on the sensory neurons innervating the myocardium, ventricles of the heart, epicardial surface of the heart, endothelial cells, and the vascular smooth muscle cells. During ischemic conditions, activation of TRPV1 channels on the perivascular nerves stimulates the release of calcitonin gene-related peptide and substance P to produce cardioprotection. Furthermore, TRPV1 channel activation reduces the generation of free radicals and inflammatory cytokines, inhibits neutrophil infiltration, and enhances the production of anti-inflammatory cytokines to reduce ischemia–reperfusion-induced tissue injury. The present review describes the potential involvement of TRPV1 channels and the signaling cascade in attenuating ischemia–reperfusion injury in various organs.

Keywords: ischemia reperfusion; reperfusion injury; injury; trpv1 channels

Journal Title: Journal of Cardiovascular Pharmacology and Therapeutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.