LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Equi-stress boundaries in two- and three-dimensional elastostatics: The single-layer potential approach

Photo by drew_hays from unsplash

The well-known developments in elastostatics concerning the equi-stressness criterion of optimality for two-dimensional multi-connected unbounded solids under the bulk-dominating load are generalized toward the transient three-dimensional case with rotational symmetry.… Click to show full abstract

The well-known developments in elastostatics concerning the equi-stressness criterion of optimality for two-dimensional multi-connected unbounded solids under the bulk-dominating load are generalized toward the transient three-dimensional case with rotational symmetry. This paper advances our previous work by focusing specifically on explicitly identifying the optimal equi-stress surfaces through a simple regular integral equation which involves the single-layer potential kernel associated with the axially symmetric Laplacian. Its two-dimensional analogue is also obtained as a competitive counterpart to the commonly used complex-variable formalism. In both cases, the equations are reformulated as a minimization problem, solved numerically with a standard genetic algorithm over a wide variety of governing parameters thus permitting comparison of the shape optimization results in spatial and plane elasticity for multi-connected domains.

Keywords: three dimensional; single layer; stress boundaries; equi stress; layer potential

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.