LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Peridynamic modelling of higher order functionally graded plates

Photo by drew_hays from unsplash

With the development of advanced manufacturing technologies, the importance of functionally graded materials is growing as they are advantageous over widely used traditional composites. In this paper, we present a… Click to show full abstract

With the development of advanced manufacturing technologies, the importance of functionally graded materials is growing as they are advantageous over widely used traditional composites. In this paper, we present a novel peridynamic model for higher order functional graded plates for various thicknesses. Moreover, the formulation eliminates the usage of shear correction factors. Euler–Lagrange equations and Taylor’s expansion are utilised to derive the governing equations. The capability of the developed peridynamic model is demonstrated by considering several benchmark problems. In these benchmark cases simply supported, clamped and mixed boundary conditions are also tested. The peridynamic results are also verified by their finite element analysis counterparts. According to the comparison, peridynamic and finite element analysis results agree very well with each other.

Keywords: graded plates; functionally graded; higher order; peridynamic modelling; modelling higher

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.