LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sliding frictional contact problem of a layer indented by a rigid punch in couple stress elasticity

Photo from wikipedia

This paper investigates the frictional contact problem of a layer indented by a rigid punch within the framework of the couple stress elasticity. It is assumed that the layer is… Click to show full abstract

This paper investigates the frictional contact problem of a layer indented by a rigid punch within the framework of the couple stress elasticity. It is assumed that the layer is homogeneous, isotropic, and fully bonded to a rigid substrate. The mixed-boundary value problem is converted using Fourier transform into a singular integral equation in which the unknown is the contact pressure between the layer and the punch. The integral equation is further derived for the flat and cylindrical punch case profiles, normalized and then solved numerically using the Gauss–Jacobi integration formula. The obtained results are first validated based on those published for the case of a frictionless contact problem of a half-plane indented by a rigid punch and solved within the context of couple stress theory. An extensive parametric study is then conducted to investigate the effect of several parameters on the contact stresses for the both the flat and cylindrical punch profiles. These parameters include the characteristic material length, the layer height, the friction coefficient, the indentation load, and the shear modulus.

Keywords: problem; contact problem; contact; layer; indented rigid; rigid punch

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.