LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stochastic Zener model with complex order fractional derivatives

Photo by thinkmagically from unsplash

We analyze the dissipation inequality for the constitutive equation of a complex order fractional Zener model and obtain appropriate thermodynamical restrictions for the wave-type model equation in terms of its… Click to show full abstract

We analyze the dissipation inequality for the constitutive equation of a complex order fractional Zener model and obtain appropriate thermodynamical restrictions for the wave-type model equation in terms of its Laplace transform. These constraints obtained on the model parameters are less restrictive than the ones known in the previous literature. The main results of this paper are related to explicitly solving this equation in spaces of tempered distributions, proving the existence and uniqueness of the solution and discussing its regularity properties. The second set of results is related to the analysis of including random perturbations such as white noise in the model resulting in stochastic wave propagation models. We analyze various stochastic body forces, random initial excitations, and random initial velocities as input data followed by deriving the stochastic solution and calculating its most important statistical characteristics. All these results significantly extend our previous results related to a real order fractional Zener model. MSC[2020]: 26A33, 35L05, 35R11, 35R60, 60G10, 60G15, 74D05, 74J05, 82D30

Keywords: order fractional; complex order; zener model; model

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.