LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A general contact stiffness model for elastic bodies and its application in time-varying mesh stiffness of gear drive

Photo from wikipedia

As a critical element of time-varying mesh stiffness (TVMS), contact stiffness of a gear drive has been defined based on simplified Hertzian contact stiffness or semi-empirical nonlinear Hertzian contact stiffness… Click to show full abstract

As a critical element of time-varying mesh stiffness (TVMS), contact stiffness of a gear drive has been defined based on simplified Hertzian contact stiffness or semi-empirical nonlinear Hertzian contact stiffness in previous works. This study proposes a general contact stiffness model for elastic bodies through piecewise linear interpolation of contact pressure. The TVMS of a spur gear drive is determined through potential energy method and proposed contact stiffness model verified by Hertzian contact theory and finite-element method. Then, the influence of applied load on contact stiffness is studied, and the differences among proposed contact stiffness, simplified Hertzian contact stiffness, and nonlinear Hertzian contact stiffness are analyzed. Results show that contact stiffness increases with the applied load, and the TVMS based on the proposed contact stiffness model is the smallest among the three contact stiffness models. Effects of tooth width and input torque on the TVMS are further discussed. The TVMS becomes bigger with increased tooth width and input torque, but the increase rate decreases as tooth width or input torque increases. These findings indicate that reasonable matching of design parameters is beneficial for increasing load capacity and optimizing the dynamic performance of gear systems.

Keywords: contact stiffness; contact; stiffness; stiffness model; gear drive

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.