LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geometrical nonlinear characteristics of functionally graded structure using functionally graded piezoelectric materials

Photo from wikipedia

In the present article, a parametric study on the geometric nonlinear static and dynamic analysis of thin functionally graded structure sandwiched between functionally graded piezoelectric materials is presented. The properties… Click to show full abstract

In the present article, a parametric study on the geometric nonlinear static and dynamic analysis of thin functionally graded structure sandwiched between functionally graded piezoelectric materials is presented. The properties of functionally graded material are graded in the thickness direction according to a power law distribution and variation of electric field is assumed to be quadratic across the thickness of functionally graded piezoelectric materials layers. The structure is modeled using finite element modeling. The finite element formulation is derived using Hamilton’s principle using full geometric nonlinearities. This is done by using Green-Lagrangian strains instead of von-Karman strains which are usually used by most researchers while conducting similar studies. The ensued non-linear algebraic equations are then solved using the modified Newton–Raphson method. A fuzzy logic controller is used to attenuate the vibration occurring in the host structure.

Keywords: graded structure; materials geometrical; graded piezoelectric; functionally graded; piezoelectric materials; structure

Journal Title: Journal of Sandwich Structures and Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.