LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel design of honeycomb hybrid sandwich structures under air-blast

Photo from wikipedia

In this study, dynamic explicit analysis was performed to examine the air-blast performance of various hybrid sandwich designs in terms of face plate deflections and energy dissipation capacity under the… Click to show full abstract

In this study, dynamic explicit analysis was performed to examine the air-blast performance of various hybrid sandwich designs in terms of face plate deflections and energy dissipation capacity under the conventional weapons effects program (CONWEP) air-blast loads ranging from 3 kg to 8 kg trinitrotoluene for stand-off distance ranges from 150 mm to 200 mm. The blast resistance of honeycomb sandwich configurations was evaluated using steel honeycomb with different core topologies, crushable Al foam-filled steel honeycomb, and steel or steel with 3D Kevlar/polypropylene laminate employing fiber metal laminate (FML) front face. For an accurate prediction of the deformation mechanism of all steel parts, the Johnson-Cook (J-C) model was used. The composite failure criteria of Hashin, Puck, and Matzenmiller were implemented to accurately examine the fiber and matrix damage behavior. The novel hybrid design of the honeycomb sandwich structure’s blast resistance is improved by the employment of foam-filled honeycomb, an FML front face, and a circular honeycomb core. In comparison to other sandwich configurations, a novel designed hybrid sandwich construction composed of foam filled circular honeycomb with FML front facing and steel back facing (FCH-1KP0.5) achieved the highest blast resistance due to its lowest face deflection with the smallest plastic dissipation energy.

Keywords: steel; hybrid sandwich; honeycomb; air blast

Journal Title: Journal of Sandwich Structures and Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.