LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polymer spur gears behaviors under different loading conditions: A review

Photo by npi from unsplash

The significance of polymer gears to transmit power and motion is increasing continuously due to their inherent characteristics. Polymer gears have established themselves as attractive alternatives to traditional metal gears… Click to show full abstract

The significance of polymer gears to transmit power and motion is increasing continuously due to their inherent characteristics. Polymer gears have established themselves as attractive alternatives to traditional metal gears in plethora applications. They are light in weight, have lower inertia, and run noiseless than their metal counterparts. This article presents a comprehensive review of the research on polymer spur gears operating under low (0–8 Nm) and moderate (>8 and ≤17 Nm) loading conditions. Different polymers and polymer composites used till date for the fabrication of such gears are included along with different operating conditions. Various design features of polymer gears and tooth modification techniques for the improvement of the performance and durability of these gears have also been included in this review. The aspects of the modeling and simulation studies of the polymer gears are also emphasized in this paper for completeness of the review. The concept of hybrid gears is discussed along with their tribological properties. Various methods of manufacturing of polymer gears and their failure modes are discussed so as to make the article useful for researchers.

Keywords: polymer gears; spur gears; polymer; loading conditions; gears behaviors; polymer spur

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.