LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on role of particle shape in erosion wear of austenitic steel using image processing analysis technique

Photo from wikipedia

Properties of flowing media (e.g. such as fly ash, bottom ash, coal, mineral tailings, sand slurries, etc.) play a crucial role in the service life of centrifugal slurry pump components.… Click to show full abstract

Properties of flowing media (e.g. such as fly ash, bottom ash, coal, mineral tailings, sand slurries, etc.) play a crucial role in the service life of centrifugal slurry pump components. Generally, these solid particles vary in shape and size. In literature, a limited number of studies have been carried out to investigate the influence of particle size and shape on erosion wear. Stainless steel (SS 316L) is the most commonly used material for the fabrication of slurry pump components namely, casing, impeller, shafts, and sealing columns. In the present study, the influence of particle type and circularity factor on erosion wear of austenitic steel has been studied. A slurry pot tester (Ducom TR-41) was used to perform the experiments that established the erosion wear of slurry pump austenitic steel under the influence of the parameters noted above. Abrasives used in the current study are fly ash, bottom ash, and sand. Surface smoothness, circularity factor, coefficient of variance, sphericity, and solidity of solid particles were also analyzed prior to performing the experiments. The circularity factor value and erosion wear rate hold a power law relationship. Three-dimensional surface plots were plotted to explain the underlying mechanism of erosion wear.

Keywords: shape; austenitic steel; erosion wear; erosion; particle

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.