LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A study on surface microgrooves in cavitation test of 6061 aluminum alloy

Photo by shapelined from unsplash

Microgrooves of different widths and microgrooves structures with varying widths were engraved on the surface of 6061 aluminum alloy using fiber laser marking equipment. In order to investigate the influence… Click to show full abstract

Microgrooves of different widths and microgrooves structures with varying widths were engraved on the surface of 6061 aluminum alloy using fiber laser marking equipment. In order to investigate the influence of the width of microgrooves on its cavitation behavior, cavitation tests on the microgroove structure were performed using an ultrasonic vibration apparatus. The hardness, the surface roughness, and the microscopic morphology of the samples were examined with a digital microhardness tester, a digital three-dimensional video microscope, and a scanning electron microscope, respectively. The results demonstrated that, increasing microgroove size was conducive to inhibition of cavitation erosion while decreasing microgroove size had an opposite effect. The surface microgrooves group elongated the incubation period of aluminum alloy in the cavitation tests, and noticeably increased the cavitation resistance of the aluminum alloy. It was also concluded that, the microgrooves group could transform microjets aiming at the alloy surface to the inside of microgrooves, and absorbed the impacted energy from microjets, leading to a remarkable anticavitation effect.

Keywords: cavitation; aluminum alloy; surface; 6061 aluminum

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.