This study investigated the seismic performance of simply supported girder bridges with a span length of 32 m. Those bridges were a common part in China’s high-speed railway system and used… Click to show full abstract
This study investigated the seismic performance of simply supported girder bridges with a span length of 32 m. Those bridges were a common part in China’s high-speed railway system and used spherical bearings to connect girders and piers. First, a finite element model of the scaled bridge with a geometrical similarity ratio of 1:8 was established by OpenSees. Second, five seismic damage states of fixed bearings and piers were defined based on the deformation failure criterion. Finally, an incremental dynamic analysis and a pseudo-dynamic test were performed to evaluate the effects of friction-based fixed bearings on the seismic response and damage state of bearings and piers. Results show that the sliding of friction-based fixed bearings effectively restricts the force transmitting between piers and girders, and reduces the seismic damage of piers. Those bearings with a small friction coefficient lead to a large relative displacement between piers and girders, while those bearings with a large friction coefficient cause a large seismic force exceeding the yield load of piers. Therefore, an appropriate friction coefficient of friction-based fixed bearing should be determined to achieve an optimal seismic performance of bridge according to the specific conditions of bridge and ground motion inputs.
               
Click one of the above tabs to view related content.