LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational fluid dynamics study of human-induced wake and particle dispersion in indoor environment

Photo from wikipedia

The impact of human-induced wake flow and particle re-dispersion from floors in an indoor environment was investigated by performing computational fluid dynamics simulations with dynamic mesh of a moving manikin… Click to show full abstract

The impact of human-induced wake flow and particle re-dispersion from floors in an indoor environment was investigated by performing computational fluid dynamics simulations with dynamic mesh of a moving manikin model in a confined room. The manikin motion was achieved by a dynamic layering mesh method to update new grids with each time step. Particle transport from the floors and its re-dispersion was tracked by a Lagrangian approach. A series of numerical simulations of three walking speeds were performed to compare the flow disturbance induced by the walking motion. The significant airflow patterns included: an upward-directed flow in front of the body combined with a high velocity downward-directed flow at the rear of the body; a stagnant region behind the gap between the legs and counter-rotating vortices in the wake region. The airflow momentum induced by the moving body disturbed PM2.5 particles that were initially at rest on the floor to lift and become re-suspended due to its interaction with the trailing wake. The residual flow disturbances after the manikin stopped moving continued to induce the particle to spread and deposit over time. The spatial and temporal characteristics of the particle dispersion and concentration showed that higher walking speed was conducive to reducing human's exposure to contaminants in breathing region.

Keywords: induced wake; human induced; particle dispersion; particle; environment

Journal Title: Indoor and Built Environment
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.