LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine learning based survival prediction in Glioma using large-scale registry data

Photo by cokdewisnu from unsplash

Gliomas are the most common central nervous system tumors exhibiting poor clinical outcomes. The ability to estimate prognosis is crucial for both patients and providers in order to select the… Click to show full abstract

Gliomas are the most common central nervous system tumors exhibiting poor clinical outcomes. The ability to estimate prognosis is crucial for both patients and providers in order to select the most appropriate treatment. Machine learning (ML) allows for sophisticated approaches to survival prediction using real world clinical parameters needed to achieve superior predictive accuracy. We employed Cox Proportional hazards (CPH) model, Support Vector Machine (SVM) model, Random Forest (RF) model in a large glioma dataset (3462 patients, diagnosed 2000–2018) to explore the most optimal approach to survival prediction. Features employed were age, sex, surgical resection status, tumor histology and tumor site, administration of radiation therapy (RT) and chemotherapy status. Concordance index (c-index) was employed to assess the accuracy of survival time prediction. All three models performed well with prediction accuracy (CI 0.767, 0.771, 0.57 for CPH, SVM, RF models respectively) with the best performance achieved when incorporating RT and chemotherapy administration status which emerged as key predictive features. Within the subset of glioblastoma patients, similar prediction accuracy was achieved. These findings should prompt stricter clinician oversight over registry data accuracy through quality assurance as we move towards meaningful predictive ability using ML approaches in glioma.

Keywords: registry data; accuracy; machine learning; prediction; survival prediction

Journal Title: Health Informatics Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.