LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds

Photo from wikipedia

A metal matrix composite made of AZ31 containing SiC nano-particles was successfully produced by friction stir welding (FSW), and the effect of processing parameters such as rotational and transversal speeds… Click to show full abstract

A metal matrix composite made of AZ31 containing SiC nano-particles was successfully produced by friction stir welding (FSW), and the effect of processing parameters such as rotational and transversal speeds on the microstructure (grain size) and mechanical properties (tensile and hardness tests) were investigated. Prior to friction stir welding, nano-sized SiC particles were incorporated into the joint line and then different rotational (600, 800 and 1000 r/min) and transversal speeds (25, 75, 125 and 175 mm/min) were tested. The results indicated that the grain size of the matrix and SiC nano-particles are two key parameters controlling different characteristics of the developed composite. Both parameters, in turns, are dependent on the heat generated during the FSW process. The increase of rotational speed and decrease of transversal speed result in high amount of heat and homogeneous distribution of SiC nano-particles. The former leads to grain growth and decrease of strength and hardness, while the latter causes grain refinement and increases of strength and hardness. Accordingly, the heat input has opposite effects on matrix grain growth and homogeneous distribution of particles. Therefore, optimum values of rotational and transversal speeds were found (800 r/min and 75 mm/min) to produce the best microstructure and mechanical properties.

Keywords: sic nano; mechanical properties; stir welding; friction stir

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.