LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical and thermodynamic investigations of a methane and hydrogen blend fueled large bore engine

Photo from wikipedia

The following paper presents thermodynamic and optical investigations of the natural flame and OH radical chemiluminescence of a hydrogen enriched methane combustion compared to natural gas combustion. The engine under… Click to show full abstract

The following paper presents thermodynamic and optical investigations of the natural flame and OH radical chemiluminescence of a hydrogen enriched methane combustion compared to natural gas combustion. The engine under investigation is a port-fueled unscavenged prechamber 4.8 L single cylinder large bore engine. The blends under consideration are 2%V, 5%V,10%V, and 40%V of hydrogen expected to be blended within existing natural gas grids in a short and mid-term timeline in order to store green energy from solar and wind. These fuel blends could be used for stabilization of the energy supply by reconverting the renewable fuel CH4/H2 in combined heat and power plants. As expected, admixture of hydrogen extends the ignition limits of the fuel mixture toward lean ranges up to an air-fuel equivalence ratio of almost 2. No negative effect on combustion is observed up to an admixture of 40%V hydrogen. At 40%V hydrogen, abnormal combustion like backfire occurs at an air-fuel equivalence ratio of 1.5. The higher mixtures exhibit increased nitrogen oxide emissions due to higher combustion chamber temperatures, while methane slip and CO emissions are reduced due to more complete combustion. The optical investigation of the natural flame and OH radical chemiluminescence are in good agreement with the thermodynamic results verifying the more intense combustion of the fuel blends by means of the chemiluminescence intensity. Further, lube oil combustion and a continuing luminescence after the thermodynamic end of combustion are observed.

Keywords: large bore; fuel; hydrogen; combustion; bore engine

Journal Title: International Journal of Engine Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.