LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Experimental Endovascular Air Embolisms Using a New Model for the Generation and Detection of Highly Calibrated Micro Air Bubbles

Photo from wikipedia

Background: Air embolism (AE), especially when affecting the brain, is an underrated and potentially life-threatening complication in various endovascular interventions. This study aims to investigate experimental AEs using a new… Click to show full abstract

Background: Air embolism (AE), especially when affecting the brain, is an underrated and potentially life-threatening complication in various endovascular interventions. This study aims to investigate experimental AEs using a new model to generate micro air bubbles (MAB), to assess the impact of a catheter on these MAB, and to demonstrate the applicability of this model in vivo. Materials and Methods: Micro air bubbles were created using a system based on microfluidic channels. The MAB were detected and analyzed automatically. Micro air bubbles, with a target size of 85 µm, were generated and injected through a microcatheter. The MAB diameters proximal and distal to the catheter were assessed and compared. In a subsequent in vivo application, 2000 MAB were injected into the aorta (at the aortic valve) and into the common carotid artery (CCA) of a rat, respectively, using a microcatheter, resembling AE occurring during cardiovascular interventions. Results: Micro air bubbles with a highly calibrated size could be successfully generated (median: 85.5 µm, SD 1.9 µm). After passage of the microcatheter, the MAB were similar in diameter (median: 86.6 µm) but at a lower number (60.1% of the injected MAB) and a substantially higher scattering of diameters (SD 29.6 µm). In vivo injection of MAB into the aorta resulted in cerebral microinfarctions in both hemispheres, whereas injection into the CCA caused exclusively ipsilateral microinfarctions. Conclusion: Using this new AE model, MAB can be generated precisely and reproducibly, resulting in cerebral microinfarctions. This model is feasible for further studies on the pathophysiology and prevention of AE in cardiovascular procedures.

Keywords: air bubbles; new model; using new; air; micro air

Journal Title: Journal of Endovascular Therapy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.