In this article, we studied the robust security transmission design for multi-user peer-to-peer relay networks, where all users demand secure communication and the eavesdropper is passive. Although the previous researches… Click to show full abstract
In this article, we studied the robust security transmission design for multi-user peer-to-peer relay networks, where all users demand secure communication and the eavesdropper is passive. Although the previous researches have designed the physical-layer security schemes under perfect channel state information, this study focuses on investigating the robust transmission design in the presence of a passive eavesdropper. Our goal is to maximize the artificial noise power to confuse the passive eavesdropper and subject to the worst-case signal-to-interference-noise-ratio constraints for all users under a bounded spherical region for the norm of the channel state information error vector from the relays to the destinations and the individual power constraints of all relay nodes. Mathematically, the original robust problem is difficult to solve due to its non-linearity and non-convexity. We propose to adopt S-Procedure and rank relaxation techniques to convert it to a semidefinite programming convex problem. The numerical results show the advantage of the proposed robust method.
               
Click one of the above tabs to view related content.