LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy-efficient chain-based data gathering applied to communicating concrete

Photo by hollymindrup from unsplash

Wireless Sensor Networks are very convenient to monitor structures or even materials, as in McBIM project (Materials communicating with the Building Information Modeling). This project aims to develop the concept… Click to show full abstract

Wireless Sensor Networks are very convenient to monitor structures or even materials, as in McBIM project (Materials communicating with the Building Information Modeling). This project aims to develop the concept of “communicating concretes,” which are concrete elements embedding wireless sensor networks, for applications dedicated to Structure Health Monitoring in the construction industry. Due to applicative constraints, the topology of the wireless sensor network follows a chain-based structure. Node batteries cannot be replaced or easily recharged, it is crucial to evaluate the energy consumed by each node during the monitoring process. This area has been extensively studied leading to different energy models to evaluate energy consumption for chain-based structures. However, no simple, practical, and analytical network energy models have yet been proposed. Energy evaluation models of periodic data collection for chain-based structures are proposed. These models are compared and evaluated with an Arduino XBee–based platform. Experimental results show the mean prediction error of our models is 5%. Realizing aggregation at nodes significantly reduces energy consumption and avoids hot-spot problem with homogeneous consumptions along the chain. Models give an approximate lifetime of the wireless sensor network and communicating concretes services. They can also be used online by nodes for a self-assessment of their energy consumptions.

Keywords: chain; chain based; wireless sensor; energy

Journal Title: International Journal of Distributed Sensor Networks
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.