LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of alkali treatment on properties of willow bark fiber as potential fillers for polymer composites

Photo from wikipedia

In this work, willow fiber was extracted from willow inner bark and modified with alkali solution of various concentrations, temperature and time. The morphology, surface functional group, crystal and thermal… Click to show full abstract

In this work, willow fiber was extracted from willow inner bark and modified with alkali solution of various concentrations, temperature and time. The morphology, surface functional group, crystal and thermal stability were investigated by using a scanning electron microscopy, a Fourier transform infrared spectroscopy, an X-ray powder diffractometer, and a simultaneous thermal analyzer, respectively. The acid (H2SO4, 2 ml/l) extraction procedure removed the hemicellulose and part of lignin from willow bark, cleared the aggregation of WB, kept the crystal structure of willow fiber, dramatically increased the crystal length of fiber (from 18.46 to 30.15 nm), and enhanced the onset degradation temperature (from 262.23℃ to 297.62℃) and chemical reactivity (DTG: from 0.57%/s to 0.84%/s). The alkali treatment further removed lignin from willow fiber, smoothed the fiber surface, increased the intensity of cellulose ( I 002 ) from 646 counts to 1292 counts, and lengthened the crystal length from 30.15 to 41.84 nm. Varying the alkali treating condition, the crystal index and thermal stability reached to the climax at 60℃ of treating temperature and 7 h treating time. The treated willow fiber may have potential applications to composite with polymer, and to be used in pharmaceutical field as additives.

Keywords: fiber; bark; willow fiber; willow bark; alkali treatment

Journal Title: Journal of Engineered Fibers and Fabrics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.