LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite strip-Riccati transfer matrix method for buckling analysis of tree-branched cross-section thin-walled members

Photo from wikipedia

Thin-walled components are gaining wide application in the field of modern engineering structures. The buckling analysis of thin-walled structures has thus become an important research topic. Here, we developed a… Click to show full abstract

Thin-walled components are gaining wide application in the field of modern engineering structures. The buckling analysis of thin-walled structures has thus become an important research topic. Here, we developed a new method named as finite strip-Riccati transfer matrix method (Riccati FSTMM) for buckling analysis of tree-branched cross-section thin-walled members. The method integrates Riccati transfer matrix method (Riccati TMM) for tree multi-body system with semi-analytical finite strip method (SA-FSM). Compared to SA-FSM, Riccati FSTMM features a smaller matrix and higher calculation efficiency, with no need for global stiffness matrix. In addition, by arranging uniformly distributed middle nodal lines inside strip elements, we developed the high order finite strip-Riccati transfer matrix method (Riccati HFSTMM) for buckling analysis of tree-branched cross-section thin-walled members. This method further improves the efficiency and accuracy of Riccati FSTMM. We tested the two proposed methods with two numerical examples, and demonstrated their superior reliability and efficiency over the finite element method (FEM).

Keywords: matrix; buckling analysis; finite strip; riccati; thin walled; method

Journal Title: Advances in Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.