LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predictions of three-dimensional contact stresses of a radial truck tire under different driving modes

Photo from wikipedia

In pavement design, vehicle load is typically simplified as vertical circular uniform loading. Due to the vehicle dynamic effect and deformation of a tire, non-uniform three-dimensional contact stresses are produced… Click to show full abstract

In pavement design, vehicle load is typically simplified as vertical circular uniform loading. Due to the vehicle dynamic effect and deformation of a tire, non-uniform three-dimensional contact stresses are produced at the contact interface between the tire and pavement under different driving modes. For this paper, an 11R22.5 truck radial tire was selected. Considering the geometric nonlinearity and large deformation of the tire and nonlinear characteristics of tire-pavement contact, the Neo-Hookean and Rebar models are used to simulate the hyperelastic rubber material and rubber-cord composite material, respectively. The three-dimensional contact stress distribution under static, free rolling, acceleration, braking, and cornering modes was simulated and analyzed. The results show that inflation pressure, axle load, and friction coefficient of the tire significantly affect the three-dimensional contact stress distribution. Further, three-dimensional stresses are non-uniformly distributed, rather than in the traditional simplified circular uniform load. The three-dimensional stress distribution of tire-pavement in different driving modes is also significantly different. The vertical and lateral stresses in the state of cornering are the largest, the longitudinal stress in the state of braking is the largest as well. The research results provide reference for future pavement design and pavement damage analysis.

Keywords: different driving; tire; dimensional contact; driving modes; three dimensional

Journal Title: Advances in Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.