LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of the impeller for hydraulic performance improvement of a high-speed magnetic drive pump

Photo from wikipedia

Magnetic drive centrifugal pumps have compact structure and lower efficiency than ordinary centrifugal pumps. The surrogate-based optimization technique was applied to improve the performance of a high-speed magnetic drive pump… Click to show full abstract

Magnetic drive centrifugal pumps have compact structure and lower efficiency than ordinary centrifugal pumps. The surrogate-based optimization technique was applied to improve the performance of a high-speed magnetic drive pump with the help of numerical simulations. Eight geometrical parameters of the impeller were considered as the design variable. About 290 samples of impeller were generated by optimal Latin hypercube sampling (OLHS) method, and the corresponding efficiencies of all the impeller samplings were obtained from numerical simulation. The performance test of the prototype pump was carried out, and the experimental results were in good agreement with the numerical simulation results. The hydraulic efficiency at 1.2 Qd of the magnetic drive pump was set as the optimization objective. Using response surface methodology (RSM), surrogate models were established for the objective functions based on the numerical results. The multi-island genetic algorithm (MIGA) was used to optimize the impeller. The hydraulic efficiency of the optimal impeller at rated flow rate was 72.89%, which was 6.23% higher than the prototype impeller.

Keywords: drive pump; magnetic drive; drive; optimization; performance

Journal Title: Advances in Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.