LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-objective optimization of Nd:Yag laser machining’s conflicting responses while milling micro-channels

Photo from wikipedia

Laser processing of materials finds application in micro-nano devices mainly because of its accuracy, flexibility, and ability to machine almost any material. Although it offers numerous advantages, it is a… Click to show full abstract

Laser processing of materials finds application in micro-nano devices mainly because of its accuracy, flexibility, and ability to machine almost any material. Although it offers numerous advantages, it is a complex process involving a large number of factors. The quality of machining often depends on the appropriate selection of parameters. Moreover, the output responses in machining processes have conflicting nature; some are to be minimized, and others have to be maximized. This work uses grey relationship analysis coupled with principal component analysis for multi-response optimization of conflicting responses during laser machining of micro-channels. Micro-channels with a cross-sectional size of 200 × 100 µm were created using Nd:YAG laser beam micro-milling in steel alloy (AISI 1045). The scan speed, layer thickness, and scan strategy were found to have a significant effect on the dimensional accuracy of the microchannel. At the same time, the material removal rate was mostly influenced by layer thickness. Multi-response optimization results suggest low pulse frequency, high scan speed, low layer thickness, and S3 scan strategy for accurately fabricating micro-channels.

Keywords: conflicting responses; laser machining; micro; micro channels; optimization

Journal Title: Advances in Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.