LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A nonlinear total variation based denoising method for electrostatic signal of low signal-to-noise ratio

Photo from wikipedia

Aero-engine electrostatic monitoring technology (EMT) is a novel and effective condition monitoring technology. With the help of EMT, effective monitoring of early failures can be achieved. Since the electrostatic monitoring… Click to show full abstract

Aero-engine electrostatic monitoring technology (EMT) is a novel and effective condition monitoring technology. With the help of EMT, effective monitoring of early failures can be achieved. Since the electrostatic monitoring of the running engine will be strongly interfered, the sampled electrostatic signal has various noise components and low signal-to-noise ratio (SNR). After analyzing the source of the noise components carried by the electrostatic signal, this paper proposes a method for electrostatic signal denoising in a strong interference environment, which is based on the nonlinear total variation theory. In the experiments, the simulated electrostatic measurement signal and the actual test-run electrostatic measurement signal were used as the analysis objects, and the denoising test was carried out by using the proposed method. Meanwhile, the denoising effect was compared and analyzed with other classical methods. The experimental results show that the proposed denoising method can effectively remove random noise, electromagnetic pulse and periodic noise in electrostatic signal, and is more applicable to the measured electrostatic signal with low SNR than the classical electrostatic signal denoising methods such as wavelet threshold denoising method and empirical mode decomposition method.

Keywords: low signal; electrostatic signal; signal; denoising method; signal noise

Journal Title: Advances in Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.