LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Load characterization of the main bearing of a large tunnel boring machine based on dynamic characteristic parameters

Photo from wikipedia

This research was carried out to solve the problem of the reasonable characterization of the working load of the main bearing of a large tunnel boring machine (TBM) under complex… Click to show full abstract

This research was carried out to solve the problem of the reasonable characterization of the working load of the main bearing of a large tunnel boring machine (TBM) under complex engineering geological conditions and equipment working statuses. A typical telescopic swing main drive system is considered, and a characterization approach based on acquired dynamic characteristic parameters is proposed. First, the axial load Fa, radial load Fr, overturning moment Mk, and torque T are considered as the load indexes of the main bearing. The main drive load model is then developed, and the load indexes are expressed by exploring the relationships between each load index and dynamic characteristic parameters such as the pressures, displacements of the hydraulic cylinders, and torques of the driving motors. Finally, the load indexes are characterized based on a subsea tunnel shield project, representative engineering geologies, and characteristic load inputs. The results indicate that by taking into account the variable attitude of the main drive system, each load index can be expressed as functions of the pressures, displacements of the hydraulic cylinders, and torques of the driving motors. According to the variation of the dynamic characteristic parameters, the load condition of the main bearing during application is accurately characterized. Different geologies are found to correspond to different load levels; the load under the dolomitic limestone and filling karst cave strata is found to be almost 1.5–1.9 times greater than that under diabase, while the torque is almost five times greater. The proposed load characterization approach provides an accurate load input conforming to engineering practice for the design and selection of the main bearing.

Keywords: dynamic characteristic; load; main bearing; characterization; characteristic parameters

Journal Title: Advances in Mechanical Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.