LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pitching axis control for a satellite camera based on a novel active disturbance rejection controller

Photo by clemono from unsplash

The pitching axis of a satellite camera is controlled under the weightless environment. A novel active disturbance rejection controller is designed to eliminate the influences of the pitching axis. The… Click to show full abstract

The pitching axis of a satellite camera is controlled under the weightless environment. A novel active disturbance rejection controller is designed to eliminate the influences of the pitching axis. The novel active disturbance rejection controller is designed based on a new nonlinear function, and thus, this function is first established. The function exhibits better continuity and smoothness than previously available functions, hence, it can effectively improve the high-frequency flutter phenomenon. Therefore, the novel active disturbance rejection controller based on the new nonlinear function can eliminate disturbances of the pitching axis. The novel active disturbance rejection controller is composed of a tracking differentiator, a novel extended state observer, and a novel nonlinear state error feedback. The tracking differentiator is used to arrange the transient process. Nonlinear dynamics, model uncertainty, and external disturbances are extended to a new state. The novel extended state observer is utilized to observe this state. The overtime variation of the system can be predicted and compensated using the novel extended state observer. The novel nonlinear state error feedback is adopted to restrain the residual errors of the system. Finally, simulation experiments are performed, and results show that the novel active disturbance rejection controller exhibits better performance than the traditional active disturbance rejection controller.

Keywords: rejection controller; disturbance rejection; active disturbance

Journal Title: Advances in Mechanical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.