LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of kerosene combustion under fuel-rich conditions

Photo by fabiooulucas from unsplash

The turbo-pump and turbine are driven by liquid fuel fed into a gas generator, where the fuel is oxidized with a liquid oxidizing agent. For stable operation of the turbine,… Click to show full abstract

The turbo-pump and turbine are driven by liquid fuel fed into a gas generator, where the fuel is oxidized with a liquid oxidizing agent. For stable operation of the turbine, the combustion temperature of the gas generator must be maintained below 1000 K. The thermodynamic characteristics of kerosene oxidation in the gas generator must be understood to optimize the design and operation conditions of the liquid-fueled rocket engine system. Herein, the 3-species surrogate mixture model for kerosene was selected, and the detailed Dagaut’s kerosene oxidation mechanism consisting of 225 chemical species and 1800 reversible chemical reactions was utilized. The exit gas temperature and product gas composition in the gas generator under fuel-rich conditions were simulated by applying the perfectly stirred reactor model. The perfectly stirred reactor model was used in combination with the liquid spray model for evaporation of the droplets and the two-temperature model for evaluation of the flame temperature separately from the locally averaged reactor temperature. The theoretical prediction of the gas species fraction and soot yield could be improved by applying the tar cracking mechanism, where the reaction characteristics under high temperature were taken into account.

Keywords: temperature; gas; fuel rich; fuel; model; gas generator

Journal Title: Advances in Mechanical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.