LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibration suppression for flywheel energy storage system using modal decoupling control

Photo from wikipedia

Magnetic bearings have been used in flywheel energy storage systems to improve their performance because these kinds of bearings can provide non-contact supporting so that the friction between the rotor… Click to show full abstract

Magnetic bearings have been used in flywheel energy storage systems to improve their performance because these kinds of bearings can provide non-contact supporting so that the friction between the rotor and the bearings is reduced significantly. However, the gyroscopic coupling, parameter coupling, and imbalance force affect the operating performance and stability of a magnetic suspended flywheel energy storage system with asymmetric rotor; therefore, the main purpose of this study is to propose a control method for achieving decoupling and stable operation of the aforementioned system. To this end, after deriving the mathematical model of a radial 4-degree-of-freedom rotor–bearing system, a novel cross-feedback-based modal decoupling controller is designed for vibration suppression caused by gyroscopic coupling, parameter coupling, and imbalance force. Better performance is obtained through comparing the decoupling performance, control performance, and disturbance rejection performance with a traditional decentralized proportional–integral–derivative controller and a cross-feedback controller via ADAMS–MATLAB co-simulation technology and experimental results.

Keywords: energy storage; system; performance; flywheel energy

Journal Title: Advances in Mechanical Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.