LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The feasibility of external gas-assisted mold-temperature control for thin-wall injection molding

Photo by fabiooulucas from unsplash

Simulation and experimental testing were conducted on an external gas-assisted mold-temperature control combined with a pulsed cooling system used for thin-wall injection molding to determine its effect on the heating… Click to show full abstract

Simulation and experimental testing were conducted on an external gas-assisted mold-temperature control combined with a pulsed cooling system used for thin-wall injection molding to determine its effect on the heating rate and temperature distribution of a mold surface. For mold heating via external gas-assisted mold-temperature control, a hot gas was directly discharged on the cavity surface. Based on the heat convection between the hot gas and the cavity surface, the cavity temperature rose to the target value. Practically, the gap between the heating surface and the gas gate is an important parameter as it strongly influences the heating process. Therefore, this parameter was analyzed under different values of plate-insert thickness herein. Heating was elucidated by the temperature distribution and heating-rate data detected by the infrared camera and sensors. Then, external gas-assisted mold-temperature control was applied for the thin-wall injection-molding part of 0.5 mm thickness with the local-gate-temperature control. The results show that with 300°C gas temperature, the heating rate could reach 9°C/s with a 0.5-mm stamp thickness and a 4-mm gas gap. The results show that with local heating at the melt-entrance area of the mold plate, the cavity was filled with a 20-s heating cycle.

Keywords: temperature; temperature control; gas; external gas; gas assisted

Journal Title: Advances in Mechanical Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.