LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ultrasonic-assisted soft abrasive flow processing method for mold structured surfaces

Photo from wikipedia

As a fluid-based precise processing method, soft abrasive flow processing has been widely used in advanced electromechanical systems, complex mold manufacturing, and other engineering fields. Because of the low volume… Click to show full abstract

As a fluid-based precise processing method, soft abrasive flow processing has been widely used in advanced electromechanical systems, complex mold manufacturing, and other engineering fields. Because of the low volume fraction of abrasive particles and micro-force/cutting removal characteristics, there exists a potential improvement in terms of processing efficiency and uniformity. In view of the above problems, this article presents an ultrasonic-assisted soft abrasive flow processing method. Based on the realizable k–ε turbulence model and the mixture flow model, an ultrasonic coupling enhancement dynamic model for soft abrasive flow is set up, and the kinetic energy transport equation of realizable k–ε turbulence model can be revised. Using particle image velocimetry technology, an on-line observation experimental platform for ultrasonic-assisted soft abrasive flow is developed to conduct the real-time acquisition of abrasive flow state and particle distribution in a constrained flow passage. An ultrasonic-assisted soft abrasive flow processing experimental platform is established to complete the processing experiment. The experimental results show that the ultrasonic excitation vibration can effectively enhance the turbulence intensity and distribution uniformity of the abrasive flow, the average processing time can be shortened by more than 6 h, and a better surface quality can be obtained.

Keywords: abrasive flow; processing; soft abrasive; flow processing; ultrasonic assisted

Journal Title: Advances in Mechanical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.