LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Process path planning based on efficiency model for ultrasonic cutting curved surface of honeycomb composite parts

Photo by thinkmagically from unsplash

According to the roughing chip shape, the ultrasonic vibration cutting honeycomb material curved surface parts are divided into two rough machining processes of “V” shape cutting and rectangular cutting. Based… Click to show full abstract

According to the roughing chip shape, the ultrasonic vibration cutting honeycomb material curved surface parts are divided into two rough machining processes of “V” shape cutting and rectangular cutting. Based on the non-interference characteristic cutter location counting model, the cutting efficiency model is established to select a better process. First, the residual height model of the two processes is established, and the residual height is controlled by longitudinal and lateral lifting the cutter location. Second, using the coordinate system conversion principle, the projection method is used to perform global interference check on the triangular-blade and the disk-blade which are used for ultrasonic cutting honeycomb composite, and then the characteristic cutter location generation method for changing the swing angle to avoid interference is proposed. Finally, a cutting efficiency model is established. Process analysis of case parts shows: when the feed rate of disk-blade is less 0.6 times to that of triangular-blade, the machining efficiency of “V” shape cutting is higher than that of rectangular cutting. When the disk-blade’s feed rate approaches or exceeds the triangular-blade’s, especially under this circumstance that the large parts is cut, the efficiency of the latter is higher.

Keywords: curved surface; efficiency model; model; efficiency; honeycomb composite; ultrasonic cutting

Journal Title: Advances in Mechanical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.