LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane

Photo from wikipedia

Objective Compliance and viscoelastic mismatches of small diameter vascular conduits and host arteries have been the cause of conduit’s failure. Methods To reduce these mismatches, the aim of this study… Click to show full abstract

Objective Compliance and viscoelastic mismatches of small diameter vascular conduits and host arteries have been the cause of conduit’s failure. Methods To reduce these mismatches, the aim of this study was to develop and characterize a polyurethane conduit, which mimics the viscoelastic behaviors of human arteries. Electrospinning technique was used to fabricate tubular polyurethane conduits with similar properties of the human common carotid artery. This was achieved by manipulating the fiber diameter by altering the syringe flow rate of the solution. The mechanical and viscoelastic properties of the fabricated electrospun polyurethane conduits were, then, compared with commercially available vascular conduits, expanded polytetrafluoroethylene, polyethylene terephthalate (Dacron®) and the healthy human common carotid arteries. In addition, a comprehensive constitutive model was proposed to capture the visco-hyperelastic behavior of the synthetic electrospun polyurethanes, commercial conduits and human common carotid arteries. Results Results showed that increasing the fiber diameter of electrospun polyurethanes from 114 to 190 nm reduced Young’s modulus from 8 to 2 MPa. Also, thicker fiber diameter yielded in higher conduits’ viscosity. Furthermore, the results revealed that proposed visco-hyperelastic model is strongly able to fit the experimental data with great precision which proofs the reliability of the proposed model to address both nonlinear elasticity and viscoelasticity of the electrospun polyurethanes, commercial conduits and human common carotid arteries. Conclusions In conclusion, statistical analysis revealed that the elastic and viscous properties of 190 nm fiber diameter conduit are very similar to that of human common carotid artery in comparison to the commercial expanded polytetrafluoroethylene and Dacron® that are up to nine and seven times stiffer than natural vessels. Therefore, based on our findings, from the mechanical point of view, by considering the amount of Young’s modulus, compliance, distensibility and viscoelastic behavior, the fabricated electrospun polyurethane with fiber diameter of 189.6 ± 52.89 nm is an optimum conduit with promising potential for substituting natural human vessels.

Keywords: polyurethane; conduit; fiber diameter; human common; common carotid; diameter

Journal Title: Vascular
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.