LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved real-time object proposals generation method based on local binary pattern

Photo from wikipedia

Generating a group of category-independent proposals of objects in an image within a very short time is an effective approach to accelerate traditional sliding window search, which has been widely… Click to show full abstract

Generating a group of category-independent proposals of objects in an image within a very short time is an effective approach to accelerate traditional sliding window search, which has been widely used in preprocessing step of object recognition. In this article, we propose a novel object proposals generation method to produce an order set of candidate windows covering most of object instances. With combination of gradient and local binary pattern, our approach achieves better performance than BING in finding occluded objects and objects in dim lighting conditions. In experiments on the challenging PASCAL VOC 2007 data set, we show that our approach is significantly more accurate than BING. In particular, using 2000 proposals, we achieve 97.6% object detection rate and 69.3% mean average best overlap. Moreover, our proposed method is very efficient and takes only about 0.006 s per image on a laptop central processing unit. The detection speed and high accuracy of proposed method mean that it can be applied to recognizing specific objects in robot visions.

Keywords: object proposals; generation method; method; proposals generation; binary pattern; local binary

Journal Title: International Journal of Advanced Robotic Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.