LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust exponential point stabilization control of the high-speed underactuated unmanned marine vehicle with model asymmetry

Photo from wikipedia

Point stabilization control of a class of asymmetric underactuated high-speed unmanned marine vehicle is discussed, and a robust exponential stabilization control algorithm is proposed based on homogeneous theory, average system… Click to show full abstract

Point stabilization control of a class of asymmetric underactuated high-speed unmanned marine vehicle is discussed, and a robust exponential stabilization control algorithm is proposed based on homogeneous theory, average system theory, and nonlinear backstepping technology. Firstly, point stabilization control problem of a high-speed underactuated unmanned marine vehicle with model asymmetry is formulated, and then global differential homeomorphism transformation is designed, in order to overcome the difficulties caused by unmanned marine vehicle with model asymmetry. Secondly, the control system is transformed into the standard form of homogeneous interference system by output state variable transformation design and input transformation design. A novel interference function is designed, and then difficulties caused by the higher order velocities in damping coefficients are solved, via homogeneous stability design and homogeneity degree analyzing the expansion of the designed new state variables. Thirdly, by introducing the virtual input of backstepping and the average system theory, point stabilization controller for the underactuated high-speed unmanned marine vehicle is proposed based on homogeneous theory, which could achieve global and periodic time-varying robust exponential stability, and then stability of the point stabilization control algorithm is proved by using homogeneous stability theory and average system stability theory. At last, the effectiveness and accuracy of the control algorithm proposed is verified by semi-physical simulation experiment carried out in our laboratory.

Keywords: point stabilization; stabilization; control; unmanned marine; stabilization control; marine vehicle

Journal Title: International Journal of Advanced Robotic Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.