LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using latent class analysis to inform the design of an EHR-based national chronic disease surveillance model.

Photo from wikipedia

The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot electronic health record (EHR) surveillance system capable of providing national chronic disease estimates. To strategically engage partner sites, MENDS… Click to show full abstract

The Multi-state EHR-based Network for Disease Surveillance (MENDS) developed a pilot electronic health record (EHR) surveillance system capable of providing national chronic disease estimates. To strategically engage partner sites, MENDS conducted a latent class analysis (LCA) and grouped states by similarities in socioeconomics, demographics, chronic disease and behavioral risk factor prevalence, health outcomes, and health insurance coverage. Three latent classes of states were identified, which inform the recruitment of additional partner sites in conjunction with additional factors (e.g. partner site capacity and data availability, information technology infrastructure). This methodology can be used to inform other public health surveillance modernization efforts that leverage timely EHR data to address gaps, use existing technology, and advance surveillance.

Keywords: surveillance; chronic disease; disease; ehr based; disease surveillance

Journal Title: Chronic illness
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.