To improve the successful prediction rate of the existing molecular docking methods, a new docking approach is proposed that consists of three steps: generating an ensemble of docked poses with… Click to show full abstract
To improve the successful prediction rate of the existing molecular docking methods, a new docking approach is proposed that consists of three steps: generating an ensemble of docked poses with a conventional docking method, performing clustering analysis of the ensemble to select the representative poses, and optimizing the representative structures with a low-cost quantum mechanics method. Three quantum mechanics methods, self-consistent charge density-functional tight-binding, ONIOM(DFT:PM6), and ONIOM(SCC-DFTB:PM6), are tested on 18 ligand-receptor bio-complexes. The rate of successful binding pose predictions by the proposed self-consistent charge density-functional tight-binding docking method is the highest, at 67%. The self-consistent charge density-functional tight-binding docking method should be useful for the structure-based drug design.
               
Click one of the above tabs to view related content.